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The existence of spatial patterns of disease
occurrence, particularly if they can be de-
monstrated to have spatial corr~lations with
social and environmental factors, may
prove valuable in investigating the aetiolo-
gy of a disease. The rationale is that if a di-
sease is aggregated in space, its causes are
likely to be so as well, and it may be pos-
sible to show what they are.
There are 3 major types of studies of geo-
graphical variation:
1) Studies whose aim is simply to describe
geographical distribution of disease with
respect to place of occurrence. The results
of these studies are often presented as
maps.
2) Ecological studies, or geographical cor-
relation studies, where the aim is to de-
scribe geographical variation in disease in
relation to corresponding variation in en-
vironmental factors. These studies can pro-
duce estimates of relative risk for different
levels of exposure.
3) Small area studies. Unlike I) and 2),
which are usually carried out on a relatively
large scale e.g. across countries, or counties
within a country, small area studies exa-
mine disease risks which are much more
spatially localised e.g. disease patterns in
relation to proximity to an industrial instal-
lation, or tendency for disease to show
small scale spatial clustering or aggrega-
tion. These analyses are carried out at the
level of census enumeration district or less
and are the most relevant for investigating
disease clustering.
There are several types of small area stu-
dies, including:
i) studies of clustering as a general pheno-
menon
ii) studies of point sources of pollution

iii) studies of space-time clustering.

We've already had a session from John
Bithell on statistical methods for analysing
point source exposures, so I'll only be
touching very briefly on those.

i) studies of clustering as a general
phenomenon
Starting with some definitions of clusters
and clustering. A cluster can be defined as
an excess number of cases of disease in one
small area or around a particular point
source [10] also gave the following defini-
tion: 'a cluster is a geographically bounded
group of occurrences of sufficient size and
concentration to be unlikely to have occur-
red by chance.' Clustering is often defined
as a general tendency for a more non-ran-
dom or 'clumped' distribution of disease
than would be expected to result from va-
riations in population density and chance.
fluctuations [1].
Most cluster investigations start by choos-
ing a particular area and comparing the ob-
served number of cases with the number
expected if the area had a similar incidence
as some larger reference area. This ap-
proach makes the simple assumption that
observed numbers should differ from ex-
pected numbers only because of Poisson
sampling variation. But there are problems
with this approach, including how to
choose the area, the post hoc nature of the
analysis, how to cope with extra-Poisson
variation, trends of risk with distance from
point source etc. The problem with post hoc
identification of clusters is that, while it
may demonstrate that cases can cluster, it
doesn't allow determination of whether this
is more than a chance occurrence.
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A modification of the above approach is to
assume that each case defines the centre of
a cluster, and compare the number of other
cases observed in circles of different radii
around each point to the expected number.
This is the basis for a useful test for cluste-
ring in general. Also, points which make
the largest contribution to the overall test
may be those involved in aetiologically si-
gnificant clusters.
In looking for clustering as a general phe-
nomenon, the methods I'm going to de-
scribe concentrate on localised clustering -
not regional trends or large scale heteroge-
neity such as that between counties, or
large scale variations in risk due to geogra-
phical changes in levels of known risk
factors. While these variations are impor-
tant, they are not relevant to the issue of de-
tecting localised clustering, but it may be
advisable to adjust for such large scale va-
riations in risk when carrying out small
area studies.

Cell count method
In a situation where there are many small
areas, and a limited number of cases of a
rare disease, some of the areas will have no
cases at all, and a simple X2 test of homo-
geneity is not appropriate. An alternative is
the Potthoff-Whittinghill test, which is a
powerful test of the hypothesis of heteroge-
neous risks, distributed around a common
value [12, 13]. This test can detect devia-
tions from randomness, where the heteroc

geneity is either a result of contagion, i.e.
preferential occurrence of excess cases in
areas where there are already people with
the disease; or is due to small excess risks
in several areas.
Describing the situation in algebraic terms:
suppose the study region is divided into a
large number of small areas {Ai}, reference
incidence rates rj are available for the study
region (these could be age-sex-specific or
risk factor specific) as well. as population
counts nij for the population at risk in each

small area, for each age, sex or other risk
factor group. If e is the relative risk of the
region containing Ai, then some accommo-
dation of large scale trends and heteroge-
neity can be made by taking as the null hy-
pothesis that the number of cases Oi obser-
ved in area Ai is Poisson distributed with
mean equal to the number of expected cases
E where E = e Lj[rjnij].
The Potthoff-Whittinghill test statistic is

S = Li[Oi (Oi -l)/Ei]
where Oi = observed number of cases in
small area i

Ei = expected number
and S is asymptotically approximately
normal with mean

!l = O+(O+-l)/E+
and variance = 2(N-l) !l/E+,
where N is the number of small areas and +
denotes summation over all areas in the
region of study.
The above test is what is known as a cell
count method, it uses geographical units,
such as census enumeration districts, for
which population data are readily available.

Distance or nearest neighbour methods
Other types of tests for clustering are
known as distance methods or nearest
neighbour methods. They involve the con-
sideration of circles, the size of which may
vary depending on local population density.
Also, since population data are usually
available only for pre-defined areas (ED,
LA) circle populations are either estimates
based on summing populations from whole
EDs which fall within the circle, plus some
proportion of the population of EDs which
straddle the circle, or they're approxima-
tions based on aggregating whole EDs only
into the rough shape of a circle.

The distance method described below does
not require the population to be uniformly
distributed in the absence of clustering. A
group of controls is selected from the popu-
lation at risk and statistics are based on
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whether the nearest neighbour(s) to each
case is another case or a control. Controls
might be chosen from electoral lists, or if
children are being studied, from birth regi-
sters. It is important that controls be a re-
presentative sample of the population with
the same age and sex distribution as the ca-
ses. The null hypothesis is that the cases
and controls are sampled at random from
the same age- and sex-adjusted population.
In a method developed by Cuzick and Ed-
wards [5] there are a set of case locations
(XI, X2 ••.. Xn) and a set of control locations
(Xn+l, .... Xn+m). The null hypothesis is that
any location should be no more likely to be
labelled as a case location than a control
location, i.e. the set of case locations (Xl, X2

.... Xn) is a random sample from the whole
set of locations (XI, .... Xn+m). The test of
spatial aggregation is made by identifying,
for each case location, its k nearest neigh-
bours (usually k is a small integer such as 2
or 3) and counting how many of these are
cases. In effect it's a count of the number of
cases in area Ak, where the area is that nee-
ded to go up to kth nearest neighbour from
the reference case location. The method
tests for an unusual tendency for cases to
have other cases as near neighbours. The
test statistic is

Tk = Li;tj Xij Yij

where Xij = 1 if j is the label of the kth or-
der neighbour of i, and 0 otherwise

Yij = 1 if i and j are cases, and 0
otherwise
The mean is n(n-1)kj(m+n-I) and the vari-
ance can be computed or simulations can
be used [5].
The Potthoff-Whittinghill and the Cuzick
and Edwards tests are for globally testing
for clustering, where no specific parametric
form is assumed for the alternative process.
If a test for generalised clustering is negati-
ve, it may be that expenditure of further re-
sources investigating a single cluster can't
really be justified.

ii) studies of point sources of pollution
The methods described above are not very
powerful for detecting isolated clusters for
a disease that doesn't have a general ten-
dency for clustering, unless there is a clu-
ster of overwhelming magnitude. In this si-
tuation, a better approach is to identify
putative sources of risk. However, to do
that will often involve post hoc identifica-
tion of an association, and ideally a set of
other, similar sources is needed on which to
test the proposed association and so give
the analyses statistical credibility.
To expand on this, it is difficult to deal with
post hoc reports of disease excesses in the
vicinity of a particular source of pollution.
Often the suspicion of an excess in the local
community has prompted an investigation,
which then relates the excess to a pre-
viously unsuspected point source. This ap-
proach weakens the value of the resulting
tests because one doesn't know how many
clusters exist which haven't been reported,
and the use of statistical testing in such a
situation is, strictly speaking, invalid [2].
Ideally, the decision to evaluate the effects
of a point source of pollution should be
made without prior knowledge of the disea-
se incidence in the locality. However, this
is not usually possible unless the initial
suspicion was raised at another similar site.
One way is to catalogue all major sources
of potentially hazardous emissions, gene-
rate a hypothesis using data around one
source, and then test it by examining the
other sources of the same type. This requi-
res investment of time and resources, to
create a database of emission sources and
of population and disease data at an appro-
priate level of resolution to enable calcula-
tion of observed and expected numbers. In
Britain such data resources are held by
SAHSU (the Small Area Health Statistics
Unit), an independent national facility for
the investigation of routine health statistics
near point sources of pollution [6]. But the
problem of more than one type of emission
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from each source or of different types of
sources located close to each other, and of
different levels of exposure from site to
site, means that replication of sites can be
difficult.

Hi) studies of space-time clustering;
The term space-time clustering describes
the situation where cases of a particular di-
sease occur close together in space and
close together in time, more often than
would be expected due to chance. Usually
the time and space criteria relate to date and
place of disease onset, but for events such
as congenital malformations, date and place
of birth may be used.
Space-time clustering is different to spatial
clustering - where cases are distributed in a
non-random way across a geographical
area, after allowing for the underlying po-
pulation distribution .. It is also distinct
from temporal clustering - where cases are
distributed in a non-random way with re-
spect to time period, an example would be
a disease where cases show a marked
seasonal distribution.
Why look for space-time clustering? It's of
particular interest because its presence may
indicate that the disease involves exposure
to infectious agents; or that there is trans-
mission from case' to case; or that clusters
of cases within short distances and short
time intervals of each other may be related
to intermittent toxic releases of some sort to
the environment. To explain space-time
clustering one is looking for factors or
agents which show the same pattern as the
disease cases, and since there are not likely
to be many which do, the analysis is poten-
tially very revealing.

The Knox method
The simplest method of analysis is the
Knox method [9]. To use the method the
.only data needed are the location of each
case in space (e.g. grid reference of place of
onset) and its location in time (e.g. date of

onset). Population denominators are not
needed. All possible pairs of cases are as-
sembled, their distances apart in space and
time calculated, and pairs classified as to
whether or not they fall within specified
space and time intervals. Essentially the
analysis involves a table of the form:

Time
interval

Space ~t >t All times
interval
~s a b a+b
>s c d c+d
All a+c b+d n(n-l)/2
distances

where
n = number of cases
n(n-l )/2 = total number of possible pairs
a = observed number of pairs whose

members are distance s or less apart and
time t or less apart.
The observed number of pairs within short
space and short time intervals is compared
with the number expected if the space and
time intervals between pairs are indepen-
dent of each other. The null hypothesis is
that cases which occur close together in
space should be no more likely to occur
close together in time than other cases, and
vice versa. Assuming cases are rare, inde-
pendent events, distributed as a Poisson
variable, the expected number of close
pairs, Exp[a], is calculated as:

Exp[a] = (a+b)(a+c)2/(n(n-I).
If the observed number of close pairs sig-
nificantly exceeds the expected number,
this suggests that cases occur close together
more often than would be expected due to
chance and that some other mechanism
may be involved. The significance of the
departure is tested using d, where:

d = (a-Exp[a])/sqrt(variance[a])
and is distributed as the standard normal
deviate. The variance of the number of
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close pam is calculated by permutation
[11].
How do we decide what is a 'short' space
and 'short' time interval? Often there is no
clear hypothesis to test, and so a data set is
examined over a range of space and time
intervals, and many significance tests are
carried out. For example, in an analysis of
data on childhood cancers [7], 7 space in-
tervals «1 km, <2 km, <3 km, <4 km, <5
km, <10 km, <20 km) and 12 time intervals
were used (same month, <1, <2, <3, <4, <5,
<6, <9, <12, <18, <24, <48 months). How-
ever, the problem of multiple significance
testing is not as large as it may seem, since
the 84 tests are not independent. of one
another, e.g. pairs of cases diagnosed
within 2 km and 3 months of each other are
also included in pairs of cases diagnosed
within 3 km and 4 months, and so on. This
correlation between the results of tests
means that the true significance level is not
greatly affected [4, 8]. In this situation, ad-
justing results for multiple significance tes-
ting using the Bonferroni correction
(dividing the critical significance level by
the number of tests performed, giving
P=0.05jX as the critical P value for X inde-
pendent tests at the 0.05 level of signifi-
cance [3]) would be too conservative. Ro-
drigues et al. [14], in an application of the
Knox method to space-time clustering of
Sudden Infant Death Syndrome births, ad-
justed the critical P value for the most si-
gnificant individual test by allowing a
factor of 2 for multiple testing within the
same subset and dividing by the number of
separate subsets of data examined. An ale
ternative approach would be to divide the
data into 2 sets, one for hypothesis genera-
tion, and one for hypothesis testing, and
this was the approach used for the analyses
of the childhood cancer data [7].
There is still the problem of which dates
and places to perform the analysis on. Here
some knowledge of the disease process is
needed. For example, for disease which are

diagnosed shortly after birth, and have their
origins in utero, e.g. congenital malforma-
tions, clearly it is more sensible to use date
and place of birth rather than date and place
of diagnosis of the condition. The ideal is
to choose the date and location which are as
near as possible to the actual disease-pro-
ducing event. For conditions which are re-
cognised soon after birth, which probably
arose during foetal development, date and
place of birth are often the nearest one can
get. For other diseases occurring later in
life, date and place of disease onset may be
the only option. In such cases the sensiti-
vity of the method will be affected if there
has been migration between the time of di-
sease initiation and the time of its recogni-
tion. Sensitivity will also be reduced if the
latent period between disease initiation and
recognition is variable, this applies even if
cases haven't moved between initiation and
diagnosis. In all these situations, cases
which were clustered at their time of di-
sease initiation may not appear to be cluste-
red at their time of diagnosis. So the chan-
ces of detecting space-time clustering are
best if the date and place chosen are as near
as possible to the actual initiating event.
Possible artefactual causes of clustering
must also be considered when interpreting
any clustering patterns found in the data,
e.g. incomplete ascertainment of cases, or
clustered recognition of cases, with more
complete ascertainment in some areas or
some periods than others.

Summary of small area studies
To summarise some of the main points of
small area studies. The typical cluster inve-
stigation usually starts with an assessment
of whether the number of cases in the area
under study is truly in excess of the number
expected. This involves selecting a geogra-
phical sampling frame and a time period.
These might be biased (data dependent),
but even so the observed to expected ratio

! of cases may not be much above unity.
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Quickly establishing this may be all that is
needed to eliminate concern over the clu-
ster and to provide reassurance that disease
rates are not elevated. When an elevated
rate is found, potential biasing and con-
founding factors need to be considered, e.g.
socioeconomic confounding, biases due to
choice of area, time period, age groups etc.
The extent to which the disease excess de-
pends on the choice of these should be
examined. If there is', no pre-determined
source or focus of risk, testsJor generalised
clustering should be used over a wider area
than that -which provided the original con-
cern. If there is a suspected source of risk,
methods appropriate toanalysingpoint
sources should be used. Following this, if
the cluster is still considered 'real' the next
step could be examination of other, similar
areas for excesses e.g. around similar point
sources if the -cluster arose through
suspicion of some point source location.
This all~ws the hypqthesis to be strengthe-
ned or rejected before embarking on detai-
led studies _which may be expensive and
time consuming, need careful planning, and
for which numbers may still be too small
for mea~ingful results.

Conclusions
To conclude this brief introduction to small
area methods of investigating disease clu-
stering, one must be aware that the results
of these types of investigation need careful
interpretation. Their usefulness lies in gene-
rating hypotheses, and further epidemiolo-
gical studies, of a different design, e.g.
case-control, will usually be needed to in~
vestigate the issues raised by them.
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